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MOTIVATIONS

Discovering the underlying topological structure describing the statistical dependencies
inside a set of time series is a problem that has recently emerged as an exciting topic
in the recent years. In this poster contribution, we address the problem of sampling to-
pological complexes that leverage the expressive power of Signatures, a new feature
map invented by Terry Lyons [1, 3] and his collaborators in order to devise a relevant
joint distribution. More precisely, following recent work of Giusti and Lee, we use the
computed Signatures to understand the causality chains in the time series, that we ag-
gregate into a random complex using sampling proportionally to the causality measure,
combined with a noninformative prior enforcing the absence of cycles in the resulting
causal directed graph. Signatures of order 2 build graphs and signatures of higher order
combine into potentially higher order complexes. Sampling is performed using a simple
Metropolis-Hastings algorithm.

SIGNATURE OF ORDER 2

In order to understand causality between two time series X i and Xj, and following
Giusti and Lee [2], we compute d

dt(S
ij−Sji) = X idXj−XjdX i on a window of time. This

quantity represents the signed area of the projected path in R2 with respect to X i and Xj

coordinates. If X i and Xj exhibit a lead-lag relationship, the signed area undergoes a
significant increase. Consequently, its magnitude can serve as an indicator of causality :
a positive value implies that X i lead Xj, while a negative value signifies the opposite
relationship (lag).

CAUSALITY GRAPH

The primary objective of our algorithm is to construct a causal diagram. To accurately
express causality, the graph must be a Bayesian network (a directed acyclic graph).
As elucidated in Part 1, the signed area naturally gives direction to the edges. Howe-
ver, assessing causality through signatures is not a definitive test. This serves as a
preprocessing step to subsequently evaluate causality using a test (such as Granger
causality).

Example : Consider 3 time series (X1, X2, X3).
— Preprocess (X1, X2, X3) to reduce mean to (0, 0, 0)

— Compute {A(1, 2), A(1, 3), A(2, 3)}
— We obtain positive and substantial values for A(1, 2) and A(2, 3), raising suspicion of

causality from X1 to X2 and from X2 to X3. We can create these two edges.

— The coefficient A(1, 3) is negative and lower in magnitude. Establishing causality from
X3 to X1 would introduce cyclic dependencies into the graph. Given the lower ampli-
tude of A(1, 3), we consider this relationship negligible in comparison to the others.
Thus, the resulting graph is as follows :

Causality Diagram

X1

X2

X3

Remark 1 : In this short example, we consider A(1, 3) even if it is negative. In our
algorithm, considering that we compute A(1, 3) and A(3, 1) and that A(1, 3) = −A(3, 1),
we keep the positive one and fix the negative to 0.

Remark 2 : The data preprocessing is inspired from Giusti and Lee.

USING METROPOLIS HASTINGS TO GENERATE THE

CAUSAL DIAGRAMS DISTRIBUTION

To sample from the causal diagrams distribution, we use the following Metropolis
Hastings algorithm :

Algorithm 1 Metropolis-Hastings for Causality Diagrams

1: Set X = (X1, X2, ..., Xn).
2: Compute P = (Sij(X)− Sji(X))ij.
3: Set all Pij < 0 to 0.
4: Normalize P in [0, 1]
5: for k in {1, ..., K} do
6: while i = j do
7: Sample i, j ∼ U({1, ..., n})
8: end while
9: if Pij < Pji then

10: p = 0
11: else
12: p = Pij
13: end if
14: Sample u ∼ U([0, 1])
15: if u<p then
16: if The diagram with Xi → Xj is acceptable then
17: Create the causality arrow Xi → Xj

18: else
Do Nothing

19: end if
20: else
21: Do Nothing
22: end if
23: end for

Remark : In this algorithm, we test our diagram to see if it is acceptable. In this
context, acceptable means "respect the causality rules". We test with the package
networkx from Python if the graph is acyclic.

EXPERIMENTS

We tested our algorithm on the initial time steps of the "fMRI" dataset. The initial
samples appear coherent, in the sense that the starting and ending points of the
causality chain are relatively stable.

FURTHER WORKS

This algorithm sample from the causality diagram distribution on a fixed window. A
further work would be to sampling from the causality distribution on a moving window.
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